BOOK FLYER AND ORDER FORM

AIR QUALITY MODELING

Theories, Methodologies, Computational Techniques, and Available Databases and Software

Volume II - Advanced Topics

Editor

Paolo Zannetti

Chapter Authors

Domenico Anfossi Elisa Canepa David B. Carrington Judith C. Chow Giovanna Finzi Rosa M. González Barras John S. Irwin

Contributors

Gervásio Degrazia Enrico Ferrero Mark Hibberd Hope Michelsen Giuseppe Nunnari Darrell W. Pepper Juan L. Pérez William Physick Betty K. Pun Richard O. Richter

Peter Hurley Ashok Luhar Silvia Trini Castelli Roberto San José Christian Seigneur Patrick J. Sheehan Zbigniew Sorbjan John G. Watson

Han van Dop Paolo Zannetti

AIR & WASTE MANAGEMENT

Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software – Volume II is the second volume of a comprehensive book series on the subject of air pollution and computer modeling of air quality phenomena. The book series is available both on CD- ROM (see below) and as a <u>bound textbook</u> (search: OTHP-25). The book series is published by the <u>EnviroComp Institute</u> and the <u>Air and Waste</u> <u>Management Association</u>.

For updates, corrections, and discussion, please visit: http://www.envirocomp.org/aqm

The electronic book Air **Quality** Modeling: Theories, Methodologies. Computational Techniques, and Available Databases and Software – Volume II is distributed on CD-ROM by the EnviroComp Institute. The book takes an indepth look at some advanced topics of air pollution modeling, such as large-eddy simulations. Lagrangian particle models. receptor models, deposition phenomena, indoor air pollution modeling, atmospheric chemistry, health risks, air quality forecast, and historical perspectives on models and their evaluation. With individual chapters written by experts in their fields, this book gives environmental professionals a solid foundation for understanding advanced modeling techniques. Together with Volume I (<u>flyer</u> - <u>order form</u>), this series provides a comprehensive review of air quality modeling issues.

The electronic book is made of chapters organized in Adobe Acrobat's PDF files that can be examined using Adobe Acrobat Reader (which can be <u>freely</u> <u>downloaded</u>). The reader can use any computer platform (PC/Mac/Unix). Navigation is straightforward. The book is complete with hypertext links, references, website and email pointers, graphics, and information about chapter authors including curriculum vitae, biographies, and pictures. The Table of Contents of Volume II and the order form are presented below.

> Copyright 2005 The EnviroComp Institute and Air & Waste Management Association. All rights reserved.

Volume II – Table of Contents^{1, 2}

		Preface	xi			
		About the Editor	xiii			
		About the Publishers	XV			
		About the Chapter Authors/Contributors for Volumes I and II xvi				
1		The Problem – Air Pollution	1			
2		The Tool – Mathematical Modeling	3			
3		Emission Modeling	5			
4		Air Pollution Meteorology	7			
5		Meteorological Modeling	9			
	5A	Mesoscale Meteorological Modeling				
	5 B	Large-Eddy Simulations of the Atmospheric Boundary Layer	11			
		1 Introduction 2 Theoretical Background	11			
		3 The ABL Simulations	35			
		4 Final Remarks	74			
	5C	Computational Fluid Dynamics of Microscale Meteorological Flows				
6		Plume Rise	83			
7		Gaussian Plume Models	85			
	7A Introduction to Gaussian Plume Models					
	7 B	Simulation Algorithms in Gaussian Plume Models				
8		Gaussian Puff Models	87			
9		Special Applications of Gaussian Models	89			
10		Eulerian Dispersion Models	91			

¹ Chapters in italics will be provided in subsequent volumes. ² To see the Table of Contents for Volume I click <u>here.</u>

11	Lagrangian Particle Models	93	
	1 The Lagrangian Approach	94	
	2 Lagrangian Stochastic Models (LSM)	95	
	3 LSM Applications	128	
12	Atmospheric Transformations	163	
	1 Introduction	164	
	2 Gas-Phase Transformations	165	
	3 Heterogeneous and Aqueous Processes	172	
	4 Chemical Transformations Involved in the Formation of Air	Toxics179	
	5 Chemistry of the Upper Atmosphere: Stratospheric Ozone	183	
	6 Modeling of Gas-Phase Chemistry	193	
	7 Modeling of Heterogeneous and Aqueous Processes	199	
	8 Modeling of Reactive Plumes	207	
	9 Eulerian Models	212	
13	Deposition Phenomena	233	
	1 Introduction	234	
	2 Different Deposition Parameterizations	240	
	3 Examples of Deposition Monitoring Programs	248	
	4 Examples of Air Quality Models	251	
	5 Sensitivity Analysis by Using the OPANA Model	257	
14	Indoor Air Pollution Modeling 26		
	1 Introduction	270	
	2 Fluid Flow Fundamentals	274	
	3 Contaminant Sources	284	
	4 Design Criteria	293	
	5 Simple Modeling Techniques	297	
	6 Dynamics of Particles and Gases/Vapors	310	
	7 Numerical Modeling – CFD	322	
15	Modeling of Adverse Effects	349	
15A	Modeling of Health Risks Associated with Combustion	351	
	Facility Emissions		
	1 Introduction	351	
	2 Case Study	254	
	2 Case Study	554	

15B Odor Modeling

- 15C Visibility Modeling
- 15D Ecological Adverse Effects
- 15E Global Issues

16	Statistical Modeling	395			
16A	Air Quality Forecast and Alarm Systems				
	1 Introduction	398			
	2 Some Literature Results	401			
	3 Time Series Modelling	405			
	4 Building a Model for Air Quality Forecast	419			
	5 Identification of Statistical Air Quality Models	426			
	6 An Operational Decision Support System	437			
	7 Conclusions	445			
	Appendix	453			
16B	Receptor Models				
	1 Introduction	455			
	2 Receptor Model Types	457			
	3 Multivariate Receptor Model Mathematics	465			
	4 Model Input Measurements	469			
	5 Receptor Model Assumptions, Performance Measures, and	482			
	Validation Procedures				
	6 Summary and Conclusions	491			
17	Evaluation of Air Pollution Models	503			
	1 Introduction	503			
	2 Terminology	504			
	3 Background	507			
	4 Framework	510			
	5 Performance Measures	516			
	6 Model Evaluation	526			
	7 Statistical Model Evaluation	528			
	8 Model Quality Assurance	543			
	9 Guidelines for Model Evaluation: Towards Harmonization in	547			
	Model Evaluation Methodology				
18	A Historical Look at the Development of Regulatory Air				
	Ouality Models for the United States Environmental				
	Protection Agency				
	1 Introduction	557			
	2 Legislative History of Air Pollution Modeling	561			
	3 Air Quality Models for Individual Industrial Facilities	566			
	4 The Development of Urban-Scale Long-Term Air Quality Models	575			
	5 Development of Tropospheric Chemistry Models	579			
	6 Current Issues and Trends in Model Development	598			
19	Case Studies – Air Pollution Modeling at Local Regional				
	Continental and Clobal Scales				
	continental, and Giobai Scales	025			
20	The Future of Air Pollution Modeling				
21	Active Groups in Air Pollution Modeling	627			
22	Available Software	629			

23	Available Databases	631
24	Physical Modeling of Air Pollution	633
	Table of Contents – Volume I	635
	In Memoriam – Philip M. Roth	639
	Authors' Index	641
	Subject Index	643