BOOK FLYER AND ORDER FORM

AIR QUALITY MODELING

Theories, Methodologies, Computational Techniques, and Available Databases and Software

Volume I - Fundamentals

Editor Paolo Zanne

Paolo Zannetti

Chapter Authors

Domenico Anfossi Peter J.H. Builtjes Daewon W. Byun Elisa Canepa Joseph L. Eastman Cecil S. Keen Avraham Lacser Russell Lee Walter A. Lyons Dennis A. Moon Nicolas Moussiopoulos Thomas E. Nelson Dietmar Oettl Steven D. Reynolds Philip M. Roth Roberto San Jose Zbigniew Sorbjan Jesse Thé Paraskevi-Maria Tourlou Han van Dop Akula Venkatram Robert J. Yamartino Paolo Zannetti

Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software – Volume I is the first volume of a comprehensive book series on the subject of air pollution and computer modeling of air quality phenomena. The book series is available both on CD-ROM (see <u>below</u>) and as a <u>bound textbook</u> (search for OTHP-24). The book series is published by the <u>EnviroComp Institute</u> and the <u>Air and Waste</u> <u>Management Association</u>.

For updates, corrections, and discussion, please visit: http://www.envirocomp.org/aqm

The electronic book *Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software – Volume I* is distributed on CD-ROM. The book takes an in-depth look at the fundamentals of air pollution modeling: from a review of air pollution meteorology, to an introduction to Gaussian plume models; from a discussion of plume rise formulations, to a review of Eulerian grid models. With individual chapters written by experts in their fields, this book gives environmental professionals a solid foundation for understanding modeling techniques using both semi-empirical formulations and well-established atmospheric science.

The electronic book is made of chapters organized as Adobe Acrobat's PDF files that can be examined using Adobe Acrobat Reader (which can be <u>freely</u> <u>downloaded</u>). The reader can use any computer platform (PC/Mac/Unix) to navigate the electronic book. Navigation is straightforward. The book is complete with hypertext links, references, website and email pointers, graphics, and information about chapter authors including curriculum vitae, biographies, and pictures. The <u>Table of Contents</u> of Volume I and the <u>order</u> <u>form</u> are presented below.

Copyright 2003 EnviroComp Institute and Air & Waste Management Association. All rights reserved.

Volume I – Table of Contents¹

	Preface		
	About the Editor	xiii xv	
	About the Publishers		
	About the Chapt	er Authors	xvii
1	The Problem – A	ir Pollution	
	(Peter Builtjes)		1
	1 Our Natura	l Environment	1
	2 Air Pollutio	on, Some Definitions	3
	3 Primary an	d Secondary Pollutants	4
	4 A Short His	story of Air Pollution Modeling	5
	5 Air Pollutio	on Regulations	8
2	The Tool – Mathematical Modeling		
	(Philip M. Roth and Steven D. Reynolds)		13
	1 Why Air Qu	uality Modeling	13
	2 Modeling C	0	14
		ne Atmosphere	19
	4 Modeling A		20
		Temporal Scales	22
		Temporal Resolution	23
		7: Bias, Imprecision, and Variability of Model Performance	24 25
	9 Data Needs		25 27
	9Data Neeus10Uses of Mod		27 29
		1015	29
3	Emission Modelin	ng	33
4	Air Pollution Meteorology		
	(Zbigniew Sort	ojan)	37
	1 Synoptic M	eteorology	38
	2 Boundary-I	Layer Meteorology	61
5	Meteorological M	lodeling	<i>101</i>
6	Plume Rise		
	(Domenico Anfossi, Elisa Canepa, and Han van Dop)		103
	1 Introduction	n	108
		rical Formulations	112
		Plume Rise Models	131
		odels for Plume Rise	137
	5 Special Cas	es	157

¹ Chapters in italics will be provided in subsequent volumes.

7	Gaussian Plume Models	183
7 A	Introduction to Gaussian Plume Models	
	(Akula Venkatram and Jesse Thé)	
	1 Introduction	185 186
	2 The Point Source in the Atmospheric Boundary Layer	186
	3 The Atmospheric Boundary Layer	190
	4 Dispersion in the Atmospheric Boundary Layer	193
	5 Building Downwash	197
	6 Terrain Treatment	199
	7 Modifications to the Gaussian Framework	202
	8 Concluding Remarks	206
8	Gaussian Puff Models	209
9	Special Applications of Gaussian Models	211
10	Eulerian Dispersion Models	
	(Daewon W. Byun, Avraham Lacser,	
	Robert Yamartino, and Paolo Zannetti)	213
	1 Air Quality Modeling Methods	214
	2 Eulerian Formulations	218
	3 Analytical Solutions for Ideal Atmospheric Conditions	232
	4 Numerical Solution Methods	237
	5 Numerical Algorithms for Advection	244
	6 Horizontal Diffusion Algorithm	251
	7 Vertical Diffusion Algorithm	258
	8 Simplified Eulerian Models	268
	Appendix A	272
	Appendix B	276
	Appendix C	279
11	Lagrangian Particle Models	293
12	Atmospheric Transformations	297
13	Deposition Phenomena	301
14	Indoor Air Pollution Modeling	303
15	Modeling of Adverse Effects	305
<i>16</i>	Statistical Modeling	
17	Evaluation of Air Pollution Models	309
<i>18</i>	Regulatory Air Quality Models	311

19	Case Studies – Air Pollution Modeling at Local, Regional, Continental, and Global Scales				
	(Nicolas Moussiopoulos and Paraskevi-Maria Tourlou)	313			
	1 List of Case Studies	314			
	2 Additional Information on Case Studies Relevant to Air Pollution				
	Modeling/Simulation				
20	The Future of Air Pollution Modeling				
	(Dietmar Oettl and Roberto San Jose) 325				
	1 Processor Technology and Air Pollution Modeling	325			
	2 Comprehensive Modeling Systems (CMS)	330			
21	Active Groups in Air Pollution Modeling				
	(Nicolas Moussiopoulos and Paraskevi-Maria Tourlou)	355			
	1 List of Active Groups	356			
	2 Additional Information on Groups Working on Air Pollution	360			
	Modeling Issues				
22	Available Software				
	(Jesse Thé and Russell Lee)	363			
	1 Short-Range Models	366			
	2 Urban and Regional Photochemical Models	380			
	3 Long-Range Transport Models for Acid Deposition, Visibility	387			
	Impairment and Complex Terrain	20.4			
	4 Emergency Release and Dense Gas Models	394			
	5 Meteorological Models	406			
23	Available Databases				
	(Walter A. Lyons, Joseph L. Eastman, Thomas E. Nelson,				
	Dennis A. Moon, and Cecil S. Keen)	409			
	1 Overview	409			
	2 The Challenges	411			
	3 Characteristics of Weather Data Sets	413			
	4 NCEP Gridded Data Products	414			
	5 Data Archival	416			
	 6 Reanalysis Techniques 7 Mesoscale Prognostic Models 	418 421			
	8				
	8 Future Developments	423			

Authors' Index	427
Subject Index	429